The role of the thalamus in the more anterior pallidal and nigral territories in the basal ganglia system disturbances is recognized but still poorly understood. The contribution of the thalamus to vestibular or to tectal functions is almost ignored. The thalamus has been thought of as a "relay" that simply forwards signals to the cerebral cortex. Newer research suggests that thalamic function is more selective. Many different functions are linked to various regions of the thalamus. This is the case for many of the sensory systems (except for the olfactory system), such as the auditory, somatic, visceral, gustatory and visual systems where localized lesions provoke specific sensory deficits. A major role of the thalamus is support of motor and language systems, and much of the circuitry implicated for these systems is shared. The thalamus is functionally connected to the hippocampus as part of the extended hippocampal system at the thalamic anterior nuclei with respect to spatial memory and spatial sensory datum they are crucial for human episodic memory and rodent event memory. There is support for the hypothesis that thalamic regions connection to particular parts of the mesio-temporal lobe provide differentiation of the functioning of recollective and familiarity memory.
The neuronal information processes necessary for motor control were proposed as a network involving the thalamus as a subcortical motor centre. Through investigations of the anatomy of the brains of primates the nature of the interconnected tissues of the cerebellum to the multiple motor cortices suggested that the thalamus fulfills a key function in providing the specific channels from the basal ganglia and cerebellum to the cortical motor areas. In an investigation of the saccade and antisaccade motor response in three monkeys, the thalamic regions were found to be involved in the generation of antisaccade eye-movement.
Thalamus Wikipedia Link
Brain Mechanisms of Hallucinogens and Entactogens
This review focuses on recent brain imaging and behavioral studies of sensory gating functions, which assess similarities between the effects of classic hallucinogens (eg, psilocybin), dissociative anesthetics (eg, ketamine), and entactogens (eg, 3,4-methylenedioxymethamphetamine [MDMA]) in humans. Serotonergic hallucinogens and psychotomimetic anesthetics produce overlapping psychotic syndromes associated with a marked activation of the prefrontal cortex (hyperfrontality) and other overlapping changes in temporoparietal, striatal, and thalamic regions, suggesting that both classes of drugs act upon a common final pathway. Together with the observation that both hallucinogens and N-methyl-oaspartate (NMDA) antagonists disrupt sensory gating in rats by acting on 5-hydroxytryptamine (serotonin) 5-HT2 receptors located in cortico-striato-thalamic circuitry these findings suggest that disruption of cortico-subcortical processing leading to sensory overload of the cortex is a communality of these psychoses. In contrast to hallucinogens, the entactogen MDMA produces an emotional state of positive mood, concomitant with an activation of prefrontolimbiclparalimbic structures and a deactivation of amygdala and thalamus.
(click image to enlarge)
No comments:
Post a Comment